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Human activities are transforming the global environment
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Fossil fuel feedstocks provide o
a cheap source of the parent
: chemicals to most synthetic —=
S organlc substances
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. 1 in-6 chlldren suffer from a neurodevelopmental abnormallty, mostly of unknown causes.
* Epidemiological studies note alarming rises in allergy, atopy, asthma, diabetes, obesity, autism
spectrum disorders, etc. that are not linked to lifestyle changes. http://braindrain.dk
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Linking global contaminant releases to health (0
In an era of environmental change
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Research Questions

* Which physical/chemical
properties are most
Important for the lifetime of
persistent pollutants in the
ocean?

How will their distribution be

affected by changes in ocean
circulation and sea-ice cover?

How are climate-driven
changes affecting
concentrations in food webs?




Global biogeochemical Hg cycle
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Volatility is very important: Grasshopper effect extends

Hg lifetime in surface reservoirs

=

I .
rivers
v

SEDIM

Fate of a unit pulse of Hg to the atmosphere (eigenanalysis)
1

Amos et al.,

0.5 2013; 2014, 2015

deep ocean
sediment

1 10 100 1000 10,000
Years from perturbation (note log-scale)




First-order lifetimes (t) of Hg in upper 1000 m

<10 years for most ocean basins

Fate of unit Hg pulse to upper 1000m of North Atlantic
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Stronger affinity of PCBs for particles than Hg leads to more rapid

accumulation in the deep ocean

| 209 congeners; carcinogenic, heurotoxic
(c;;)n Extremely hydrophobic
S Strong affinity for particles
Variable volatility depending on MW
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Relative enrichment of volatile congeners in the Arctic sustaining biological

concentrations 30 years after ban

24% of 61% of
ocean inputs ocean inputs

33% of
concentration

59% of
concentration

more volatile higher K,
0 0.1 0.2 0.3 0.4 0.5
pg/L

Wagner et al., 2019



Parent chemical to perfluorooctane sulfonate (PFOS)

phased out by 3M between 2000-2002

*Riverine discharges to the North Atlantic Ocean
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Overturning of the North Atlantic results in

rapid declines in concentrations in the surface ocean

Variable concentrations and response times depending on depth
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Research Questions

* Which physical/chemical
properties are most
Important for the lifetime of
different pollutants in the
ocean?

How will their distribution be

affected by changes in ocean
circulation and sea-ice cover?

How are climate-driven
changes affecting
concentrations in food webs?




For chemicals like PFOS with weak sorption to organic carbon
Weakened AMOC = >>>bioaccumulative contaminants to the Arctic
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Surfactant properties enriching concentrations at
the surface of the Arctic Ocean?
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Sea-ice melt enhancing modeled concentrations of
PCBs in some regions of the Arctic

Difference between simulated
concentrations of chlorinated
biphenyl 153 (CB-153) with
constant 1992-1996
meteorology and 1992 to 2015
meteorology
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Our early work suggested declines in sea-ice cover I
increase losses of Hg from seawater
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* Summer rebound in atmospheric

summer observations can be explained by a large
AMDEs rebound riverine source of Hg
l * Changing river inputs and shrinking sea ice

in future climate could greatly affect Hg levels
in Arctic Ocean
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* Modeling allows major oceanic sources to
be constrained by atmospheric observations
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Arctic Ocean is a net Hg source to lower latitudes due to

transformations of the terrestrial landscape

Warming 2 x
Global Average

Melting Permafrost

Loss of Sea Ice
Fisher et al.,

Modeled (MITgcm) Hg inputs to the Arctic Ocean from rivers

Vulnerable Human Populations

0.001 0.01 0.1
Total Hg concentrations in seawater (pM)

2012; 2013; Zhang et al., 2015; Soerensen et al., 2016, Sonke et al., 2019; Zolkos et al., 2022



Melting permafrost and wildfires in the Arctic expected to have

large impacts on the global Hg cycle

Pristine stream (Canada)
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. e Fig. 2 Annual net elemental mercury (Hg®) flux into the atmosphere. The
Q?Q R net flux is HgO evasion into the atmosphere minus Hg® deposition from the
atmosphere, summed across all permafrost regions. The shaded areas
represent uncertainty in the net Hg® flux and the dashed line represents
current global anthropogenic emissions.
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Research Questions

* Which physical/chemical
properties are most
Important for the lifetime of
different pollutants in the
ocean?

e How will their distribution be
affected by changes in ocean
circulation and sea-ice cover?

e How are cIima’ge-driven
changes affecting
concentrations in food webs?




What does the future hold?
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Bioaccumulation results in magnification of chemical concentrations
at each trophic level in a food web

* Neurotoxicant

* Increased risk of
cardiovascular disease

* Endocrine disruptor

* Immunotoxicant

E)ig fish
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CH;Hg
methylmercury

methylmercury concentration

Societal Costs of methymercury exposure in US > $S64 B

(Sunderland et al., in prep.)



Seawater
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Common Hg isotopic sighature in marine fish confirms

water column origin of MeHg (rather than sediment)

Seven stable isotopes: 1%6Hg (0.16%), 1°8Hg (10.0%), 19°Hg (16.9%), 29%Hg (23.1%),

201Hg (13.2%), 202Hg (29.7%), 294Hg (6.8%).
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Peak methylated Hg (2MeHg) in subsurface ocean waters

NORTH PACIFIC OCEAN (P16N)
Low concentrations in surface waters
/ Methylated Mercury (fM)
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peak in bacterially active waters W|th active
organic carbon remineralization
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Methylated Hg species highest in polar regions due to )
decreased light and cold temperatures

Modeled present-day methylated Hg concentration in
the upper 10 m of seawater using MITgcm  Concentration (pM)
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Strongest correlation in the Atlantic Ocean with nitrate concentrations

North Atlantic Ocean (A16N)

CLIVAR 2013 (unpublished) West Atlantic Fjord (Schartup et al., 2015)
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Global modeling predicts changes in seawater MeHg as a
function of shifts in circulation/ocean acidification

Simulations are under
constrained due to
limited understanding
of the true drivers of
MeHg formation in
seawater

M Zhang et al., 2021
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Impacts of shifts in DOC and nutrients are dampened
in zooplankton due to competing intake vs. growth

Chlorophyll a [ng L]

N
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Schartup et al., 2018
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Seawater warming affects fish metabolism and growth, MeHg

elimination, prey availability, and species habitat

Unprecedented warming in the Gulf of Maine
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Fluctuations in Hg concentrations in Atlantic bluefin tuna reflect

changes in both seawater MeHg + ocean biogeochemistry

Seawater warming affects fish metabolism and growth, MeHg elimination, prey availability, and species habitat

Atlantic Bluefin Tuna (ABFT): Age 14 Years
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Summary

Volatility extends the persistence of pollutants in surface environments but effectively lowers
the concentrations of some pollutants in seawater over the short term

Partitioning to solids is an effective removal mechanism and linked to aquatic productivity
lonogenic compounds like PFOS are especially sensitive to changes in ocean circulation

In the Arctic, melting permafrost and future changes in freshwater discharges likely to
enhance direct inputs of contaminants to the atmosphere and ocean

Declines in sea-ice cover may lead to greater evasion and lower seawater concentrations of
volatile compounds in the Arctic

Seawater temperature increases can substantially amplify concentrations of bioaccumulative
pollutants
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