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• 1-in-6 children suffer from a neurodevelopmental abnormality, mostly of unknown causes.  
• Epidemiological studies note alarming rises in allergy, atopy, asthma, diabetes, obesity, autism 

spectrum disorders, etc. that are not linked to lifestyle changes. http://braindrain.dk

Environmental Releases

More than carbon

Human activities are transforming the global environment

Fossil fuel feedstocks provide 
a cheap source of the parent 
chemicals to most synthetic 
organic substances

http://braindrain.dk/


1. Emissions

2. Deposition

3. Land
4. Ocean

5. Bioavailability

6. Food webs

7. Humans

Linking global contaminant releases to health 
in an era of environmental change

PFOS

PCBs



Research Questions

• Which physical/chemical 
properties are most 
important for the lifetime of 
persistent pollutants in the 
ocean?
• How will their distribution be 

affected by changes in ocean 
circulation and sea-ice cover?
• How are climate-driven 

changes affecting 
concentrations in food webs?
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Volatility is very important: Grasshopper effect extends 
Hg lifetime in surface reservoirs
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Stronger affinity of PCBs for particles than Hg leads to more rapid 
accumulation in the deep ocean
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• 209 congeners; carcinogenic, neurotoxic
• Extremely hydrophobic
• Strong affinity for particles
• Variable volatility depending on MW

Wagner et al., 2019

Ocean water column
Log Koc CB 153: 
5.8-8.3

Log Kd Hg: ~4-6



CB-28 CB-153
61% of 

ocean inputs

33% of 
concentration

24% of 
ocean inputs

59% of 
concentration

Relative enrichment of volatile congeners in the Arctic sustaining biological 
concentrations 30 years after ban

Wagner et al., 2019

more volatile higher Koc



Parent chemical to perfluorooctane sulfonate (PFOS) 
phased out by 3M between 2000-2002 
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Modeled PFOS in North 
Atlantic seawater (10 m)

X. Zhang et al., 2017
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Overturning of the North Atlantic results in 
rapid declines in concentrations in the surface ocean

Dassuncao et al., 2017

S
ea

w
at

er
 P

FO
S

 (p
g 

L˙
1)

Year

0

30

60

90

120

1960 1960 19601980 1980 19802000 2000 20002020 2020 2020

Depth: 0-10 m Depth: 360-510 m Depth: 985-1335 m

median 95th percentile

5th percentile

75th percentile

25th percentile

Organisms with deep foraging preferences (e.g., pilot whales) will respond most slowly

Variable concentrations and response times depending on depth

Juvenile males 9-12 years
~700 m foraging depth

Zhang et al., 2017PF
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Research Questions

• Which physical/chemical 
properties are most 
important for the lifetime of 
different pollutants in the 
ocean?
• How will their distribution be 

affected by changes in ocean 
circulation and sea-ice cover?
• How are climate-driven 

changes affecting 
concentrations in food webs?



X. Zhang et al., 2017

For chemicals like PFOS with weak sorption to organic carbon 
Weakened AMOC = >>>bioaccumulative contaminants to the Arctic



Surfactant properties enriching concentrations at 
the surface of the Arctic Ocean?

Leung et al., 2017
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Sea-ice melt enhancing modeled concentrations of 
PCBs in some regions of the Arctic

Pallas
Stórhofdí

Alert

Zeppelin

Difference between simulated 
concentrations of chlorinated 
biphenyl 153 (CB-153) with 
constant 1992-1996 
meteorology and 1992 to 2015 
meteorology

Wagner et al., 2019



Our early work suggested declines in sea-ice cover 
increase losses of Hg from seawater

Sea salt
deposition

bromineBrHg(0)

Hg(II)

SEA ICE             ICE LEAD

ARCTIC OCEAN

light

Atmospheric Hg depletion events
(AMDEs) associated w/ice leads

Composite obs at Arctic sites
GEOS-Chem: standard

with Arctic rivers runoff

AMDEs
summer
rebound

• Summer rebound in atmospheric 
observations can be explained by a large 
riverine source of Hg

• Changing river inputs and shrinking sea ice 
in future climate could greatly affect Hg levels 
in Arctic Ocean

• Modeling allows major oceanic sources to 
be constrained by atmospheric observations

Fisher et al., 2012; 2013



Warming 2 x 
Global Average 

Melting Permafrost

Loss of Sea Ice

Vulnerable Human PopulationsModeled (MITgcm) Hg inputs to the Arctic Ocean from rivers

Fisher et al., 2012; 2013; Zhang et al., 2015; Soerensen et al., 2016, Sonke et al., 2019; Zolkos et al., 2022

Arctic Ocean is a net Hg source to lower latitudes due to 
transformations of the terrestrial landscape



Thaw & ice wedge trough ponds (Canada)

Pristine stream (Canada) Thermokarst stream

Beaver pond in the boreal

www.ktoo.or
g

MacMillan et al., 2015 ES&T

Schaefer et et al., 2020

Melting permafrost and wildfires in the Arctic expected to have 
large impacts on the global Hg cycle



Research Questions

• Which physical/chemical 
properties are most 
important for the lifetime of 
different pollutants in the 
ocean?
• How will their distribution be 

affected by changes in ocean 
circulation and sea-ice cover?
• How are climate-driven 

changes affecting 
concentrations in food webs?



What does the future hold?

2010 2020 Global emissions roughly constant since 2010

Streets et al. (2019)



water

plankton

small fish

big fish

top predators

methylmercury concentration

Concentrations are 106-107x water

• Neurotoxicant
• Increased risk of 

cardiovascular disease
• Endocrine disruptor
• Immunotoxicant

104 - 105

Bioaccumulation results in magnification of chemical concentrations 
at each trophic level in a food web

CH3Hg
methylmercury

22
Societal Costs of methymercury exposure in US > $64 B 

(Sunderland et al., in prep.)
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LM = Lake Melville, Labrador
GoM = Gulf of Mexico Mass dependent fractionation

Common Hg isotopic signature in marine fish confirms 
water column origin of MeHg (rather than sediment)

Seven stable isotopes: 196Hg (0.16%), 198Hg (10.0%), 199Hg (16.9%), 200Hg (23.1%), 

201Hg (13.2%), 202Hg (29.7%), 204Hg (6.8%).

Li et al. (2016), Madigan et al. (2018)



peak in bacterially active waters with active 
organic carbon remineralization

Low concentrations in surface waters
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Sunderland et al., 2009, Cossa et al., 2009, many others since this time

NORTH PACIFIC OCEAN (P16N)

Peak methylated Hg (ΣMeHg) in subsurface ocean waters
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Methylated Hg species highest in polar regions due to 
decreased light and cold temperatures

Modeled present-day methylated Hg concentration in 
the upper 10 m of seawater using MITgcm Concentration (pM)

Zhang et al., 2020



Strongest correlation in the Atlantic Ocean with nitrate concentrations

North Atlantic Ocean (A16N) 
CLIVAR 2013 (unpublished) West Atlantic Fjord (Schartup et al., 2015)

R2=0.93



Global modeling predicts changes in seawater MeHg as a 
function of shifts in circulation/ocean acidification 

Simulations are under 
constrained due to 
limited understanding 
of the true drivers of 
MeHg formation in 
seawater 

Zhang et al., 2021



Impacts of shifts in DOC and nutrients are dampened 
in zooplankton due to competing intake vs. growth

Schartup et al., 2018
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Seawater warming affects fish metabolism and growth, MeHg
elimination, prey availability, and species habitat

Pershing et al., 2015

Unprecedented warming in the Gulf of Maine



Fluctuations in Hg concentrations in Atlantic bluefin tuna reflect 
changes in both seawater MeHg + ocean biogeochemistry

Schartup et al., 2019

~50% increase between 
1970-2015

>20% decrease 
between 1990-2010Ch
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Seawater warming affects fish metabolism and growth, MeHg elimination, prey availability, and species habitat



Summary

• Volatility extends the persistence of pollutants in surface environments but effectively lowers 
the concentrations of some pollutants in seawater over the short term

• Partitioning to solids is an effective removal mechanism and linked to aquatic productivity

• Ionogenic compounds like PFOS are especially sensitive to changes in ocean circulation

• In the Arctic, melting permafrost and future changes in freshwater discharges likely to 
enhance direct inputs of contaminants to the atmosphere and ocean

• Declines in sea-ice cover may lead to greater evasion and lower seawater concentrations of 
volatile compounds in the Arctic

• Seawater temperature increases can substantially amplify concentrations of bioaccumulative
pollutants 

32
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