Linking global contaminant releases to health
in an era of environmental change
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Human activities are transforming the

global environment

1-in-6 children suffer from a neurodevelopmental abnormality,
mostly of unknown causes.
10 million U.S. children below age 17 diagnosed with asthma

(14% population) and 12% suffer from skin allergies.
http://braindrain.dk
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Environmental Releases
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Environmental factors suspected as a
primary cause of rise in chronic disease

tripled disorders have
10U in tf
bast 10 years



Epidemiology associates human biomarkers
(blood, hair, nails) with health outcomes,

so how do we identify the exposure source?
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Question: What is the exposure source?
Answer: Direct for air pollution.
Complex pathways for aquatic toxicants.
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Linking global contaminant releases to health
In an era of environmental change
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Three Examples

1. Hydroelectric power expansion and
¢ indigenous health in Canada )

L 2. Exposures pathways for PFAS from

drinking water, seafood, and consumer
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Hydro dams and methylmercury

Before flooding After flooding
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The form of mercury determines its health impact

* Inorganic mercury * Methylmercury
(i.e., quicksilver and Hg") — High absorption (>90%)
— Low absorption (0.01 - — Primarily a central

nervous system toxin
— Half-life of 50-70 days
— Chelation not effective




Whitefish muscle Hg (vg/g)

Flooding soils causes a pulse in
methylmercury
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Adapted from Schetagne, R., J. Therrien and R.

Lalumiere (2003). "Environmental monitoring at the La
Grande Complex: evolution of fish mercury levels:
summary report 1978-2000."

This has been known for half a century!!
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Northern communities are especially
vulnerable to climate change and
pollutants
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Nunatsiavut, the Labrador Inuit homeland
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MeHg in Flooded Reservoir Increases Rapidly
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Schartup et al., 2015
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Field sampling downstream of

Planned Hydro Facility Prior to Flooding
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Methylmercury concentrations projected to

increase by 10-fold (river) and 2.6 fold (estuary)
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Mean Inuit exposure forecasted to double




Exposure of sensitive groups greatest concern
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These dams would increase global
hydropower capacity by 73%

® Dams under construction =
* Dams planned Zarlf et al. (2014)



There’s a high cost in doing
Muskrat Falls wrong.

There’s power in
doing it right.

#makemuskratright
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What are
poly- and perfluoroalkyl substances (PFAS)?

IR

Detected |n 98% of Amerlcans

Dlstrlbute gIobaIIy
7" Socea .a‘#



Human studies suggest
PFAS exposure may...

increase risk of thyroid
disease

increase blood cholesterol
levels

decrease the body’s
response to vaccines

decrease fertility
in women

increase risk of high blood
pressure & preeclampsia

lower infant birth
weight
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Drinking water supplies for 6 million Americans
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PFAS are ’Forever-Chemicals”

F-C backbone does not degrade in nature

>4700 Compounds C4 - C14:
PFCAs _s buta-, penta-, hexa-,

(C,F5,:4-COOH) hepta-, octa- (PFOA),
nona-, deca-, efc.

Perfluoroalkyl
)( F substances
carbons (C,F,n+1-R)
C4 - C10:

—> buta-, hexa-,
octa- (PFOS), deca-

PFSAs
(C,F2n41-SO3H)

Not all
Polyfluoroalkyl
F - carbons N\ O UOTOKY Long-chain PFASs:
(C.F.R) PFCAs, n=>7

PFSAs,n26

More bioaccumulative, more persistent

(Buck et al. 2011; Wang et al. 2017)
27



Pathways of Human Exposure to PFAS
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Sunderland et al., 2019



How quickly will toxicants in ocean food
webs declme after global regulatlons’?




Parent chemical to perfluorooctane sulfonate (PFOS)

phased out by 3M between 2000-2002

Riverine discharges to the North Atlantic Ocean
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Large decline in FOSA in Pilot Whales
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Decline in legacy PFAS in children likely
driven by changes in consumer products

PEASs in Children from the Faroe Islands
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Three Examples

1. Emissions 3. Impacts of climate change on
@ methylmercury in Atlantic bluefin tuna

2. Deposition 6. Food webs
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Methylmercury is a bioaccumulative neurotoxin

Neurotoxin

* Impaired cardiovascular
health

* Endocrine disruptor

* |mmunotoxin

E)ig fish
———

small fish

10%-10°

00/ ixs/
CH3Hg(l) @ plankton

methylmercury concentrati

Societal Costs of methymercury exposure in US & Europe > S15 B

(Bellanger et al., 2013; Grandjean et al., 2012)



Tuna accounts for almost 40% of

US population-wide methylmercury exposure
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U.S. mercury emissions, major sources

1990, 2005, 2008, 2011
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Controls on US utilities and products help explain

30% declines in atmospheric Hg concentrations

Observed Trends atmospheric Hg? (1990-2010)
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Warming affects fish metabolism and growth, MeHg

elimination, prey availability, and species habitat
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Fish MeHg [ ng g°]

Change in MeHg [%]
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Current plateau in global Hg emissions means seawater warming will

be important factor for methylmercury in marine fish
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Societal costs of different energy choices have not

been fully evaluated; unquantified costs are LARGE

Portion of U.S, air pollution
that comes from power plants

. Acid Gases
Arsenic 77% SO,

Nickel o el

50% .
28% NOXx Chromium

13% 22%
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Summary

Hydroelectric power expansion warrants careful consideration.
Design that minimizes environmental impacts is possible but rarely
discussed.

PFAS is consumer products is likely the main exposure pathway for
the general population outside of contaminated communities
where drinking water dominates.

Global regulations can be extremely effective at reducing exposures
as illustrated for PFOS.

Regulations on carbon and mercury emissions from coal-fired
utilities are both needed to prevent further methylmercury
accumulation in fish
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