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ABSTRACT: Drinking water concentrations of per- and polyfluor-
oalkyl substances (PFAS) exceed provisional guidelines for millions of
Americans. Data on private well PFAS concentrations are limited in
many regions, and monitoring initiatives are costly and time-
consuming. Here, we examine modeling approaches for predicting
private wells likely to have detectable PFAS concentrations that could
be used to prioritize monitoring initiatives. We used nationally
available data on PFAS sources, and geologic, hydrologic and soil
properties that affect PFAS transport as predictors, and trained and
evaluated models using PFAS data (n ∼ 2300 wells) collected by the
state of New Hampshire between 2014 and 2017. Models were
developed for the five most frequently detected PFAS: perfluor-
opentanoate, perfluorohexanoate, perfluoroheptanoate, perfluorooctanoate, and perfluorooctanesulfonate. Classification random
forest models that allow nonlinearity in interactions among predictors performed the best (area under the receiver operating
characteristics curve: 0.74−0.86). Point sources such as the plastics/rubber and textile industries accounted for the highest
contribution to accuracy. Groundwater recharge, precipitation, soil sand content, and hydraulic conductivity were secondary
predictors. Our study demonstrates the utility of machine learning models for predicting PFAS in private wells, and the classification
random forest model based on nationally available predictors is readily extendable to other regions.

■ INTRODUCTION
Per- and polyfluoroalkyl substances (PFAS) are a diverse class
of anthropogenic chemicals containing thousands of chemical
structures that have been used by industry and in consumer
products since the late 1950s.1,2 Human exposure to PFAS has
been linked to adverse health impacts such as kidney and
testicular cancer, immunotoxicity, and endocrine disrup-
tion.3−5 Probabilistic surveys show detectable levels of at
least one PFAS in the serum of 98−99% of the United States
(U.S.) general population.6,7 Drinking water is widely
recognized as the predominant human exposure source near
PFAS contaminated sites.8−10 National data on concentrations
of six PFAS in large (serving >10000 individuals) public water
supplies (PWS) have been collected by the U.S. Environmental
Protection Agency’s (U.S. EPA) third Unregulated Contam-
inant Monitoring Rule (UCMR3).11 PFAS in smaller PWS will
be comprehensively sampled in the next sampling cycle
between 2023 and 2025 (UCMR5).12 However, more than
40 million U.S. individuals obtain their drinking water from
private wells and this represents a large remaining data gap for
many states.13 In UCMR3 data, the detection frequency for
PFAS in water sourced from groundwater was more than twice
that from surface water.8

Universal screening of PFAS in U.S. domestic wells would
be both costly and logistically difficult to accomplish.14

Modeling analyses can help prioritize testing in regions that

are most likely to contain detectable concentrations of PFAS.
For example, spatial modeling approaches have been
successfully used to predict inorganic contaminant concen-
trations (especially arsenic and nitrate) in well water at the
local, regional and national scales.15−19 A Bayesian network
model was applied to predict the occurrence of a novel PFAS,
GenX, in private wells around a fluorochemical manufacturing
facility.20 These studies have identified potentially important
predictors based on understanding of the sources and transport
of chemical contaminants in groundwater.
Limited national and state-level data on the locations and

magnitudes of PFAS point sources and environmental
predictors present a challenge for the development of reliable
models. Past work has shown that the probability of detecting
PFAS in public water supplies can be linked to the number of
wastewater treatment plants (WWTPs), industrial sites,
military fire-training areas, and airports certified for aqueous
film-forming foam use within a watershed.8 Other work used
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Facility Registration Service (FRS) codes to identify diverse
potential PFAS sources within watersheds in the Northeastern
U.S. and to explain differences in observed PFAS profiles in
surface waters.21 Near point sources, local groundwater fluxes
are often poorly constrained but other environmental
predictors such as precipitation, groundwater recharge, bed-
rock geology, and soil type that are relevant for hydraulic
conductivity and groundwater flow are available and can used
for spatial modeling.22,23

Here, we examine the performance of different machine
learning approaches for predicting PFAS in private wells based
on a case study of PFAS data collected by the New Hampshire
(NH) Department of Environmental Services24 between 2014
and 2017. All of the predictors used in the modeling presented
are available at the national scale, enabling generalizability of
the approach to other regions. We compare the performance of
a relatively simple functional model form (logistic regression)
to a classification random forest model. On the basis of results
of this case study, we discuss the strengths and limitations of
different modeling approaches and steps toward developing
national scale models for predicting the locations where PFAS
concentrations in private wells may exceed health-based
thresholds.

■ MATERIALS AND METHODS

New Hampshire Domestic Well PFAS Data. Approx-
imately half of NH’s population (∼520000) obtains their
drinking water from private wells.25 The state sampled more
than 2300 unique domestic wells (3900 individual samples)
between 2014 and 2017, creating a useful data set for training
and evaluating statistical models (Table 1, Supporting
Information (SI) Figure S1, Section S1).24 Sampling locations
were prioritized based on proximity to known contaminated
sites and as part of investigations into sites with potential PFAS
uses. Low detection frequencies can create bias issues that
interfere with the training of predictive models.26 The
sampling design that was weighted toward contaminated sites
and point sources therefore created a more balanced data set
for statistical model training.27,28 A limitation of this design is
that few wells were sampled in the vicinity of some known
PFAS contamination sources such as airports that use aqueous
film forming foams (AFFF) (n = 36 wells) and military bases
(n = 51 wells), limiting their predictive power in the final
model.
Concentrations of 35 PFAS were analyzed by several

laboratories following EPA Method 537 or a modified version
of Method 537 that includes isotope dilution.29 We developed
predictive models for the five PFAS that were most frequently
detected in NH wells: perfluoropentanoate (PFPeA), per-

fluorohexanoate (PFHxA), perfluoroheptanoate (PFHpA),
perfluorooctanoate (PFOA), and perfluorooctanesulfonate
(PFOS). PFPeA, PFHxA, PFHpA, and PFOA were all detected
in more than 20% of the water samples, and PFOS was
detected in 17% of the samples (Table 1).

Point Sources and Environmental Predictors. Two
categories of PFAS point sources were used as model
predictors: confirmed and potential sources. Confirmed
sources included known industrial point sources (one plastics
manufacturer and one textile manufacturer), military sites
contaminated by aqueous film forming foams (AFFF), airports
certified for AFFF use, and wastewater treatment plants
(WWTP).8,10,30,31 Potential sources were identified following
the approach used in prior work.21,32 Specifically, we used the
North American Industrial Classification System (NAICS)
codes and the US EPA Facility Registry Service (FRS) codes
that correspond to industries that are known to use and release
PFAS such as the metal plating, petroleum manufacturing, and
semiconductor industries, and textile mills (Table S2). The
potential sources were lumped into a single category because
they are more uncertain and have not been confirmed.
Since no data on the magnitudes of PFAS releases from

various sources are available, we developed a unitless relative
impact score for each point source (both confirmed and
potential sources) based on hydrological distance to the well
location, adapted from the method applied in prior work.21,32

Specifically, we calculated an impact score as an exponential
decay function with distance from the sampling site (i.e., 1/ed,
where d (km) is the Haversine distance between the point
source and well). Only industries with elevation above a well
and within the same 12-digit Hydrological Unit Code were
considered.33 We used elevation as a proxy for hydrological
flow direction because topography is known to control
groundwater flow direction for most of NH.34 Impacts from
multiple individual point sources within the same group (e.g.,
WWTPs) were summed for each well (i.e., ∑1/ed).
Two major industrial PFAS sources in New Hampshire are

known to release atmospheric PFAS emissions.35 Other work
suggests this is a plausible transport pathway for PFAS
detected in private wells.36 On the basis of air deposition
modeling studies,37,38 we estimated predominant impacts
within a circular buffer with a 10-km radius. Our modeling
analysis was insensitive to selection of a larger buffer size (30
km) more reflective of air emissions from a fluoropolymer
manufacturing location (SI Figure S2).39

Environmental predictors were selected based on their
potential relevance for transport of PFAS in groundwater.
These included soil properties (e.g., percent clay, bulk density,
organic carbon content),17 precipitation, and groundwater

Table 1. Summary Statistics for PFAS Concentrations in New Hampshire Well Water

PFAS na Uniform DLb (ng/L) Percent Detectable (%) Q1c (ng/L) Median (ng/L) Q3 (ng/L) 98th Percentile (ng/L) Max (ng/L)

PFPeA 1617 5.0 29 3.5 3.5 6.0 92 7500
PFHxA 1725 8.0 29 5.7 5.7 10 110 17000
PFHpA 2253 5.0 24 3.5 3.5 5.0 65 9200
PFOA 2373 8.0 48 5.7 5.7 30 320 52000
PFOS 2376 5.0 17 3.5 3.5 3.5 75 11000
PFAS 2379 31 40 22 24 58 670 86000

an = Number of unique wells sampled. bUniform detection limit (DL): this value was calculated as the 98th percentile of all DL reported across
batches after extreme outliers were removed. We removed 254 (1.6%) of total samples where the DL was more than five times the median DL
across batches. cWhen calculating summary statistics (Q1:25th percentile, median, Q3:75th percentile, 98th percentile), samples below detected
were imputed with uniform DL divided by square root of 2.
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recharge,15 and geological factors that can affect groundwater
flow (see SI, Section S2 and Table S3 for additional
details).40−42

Statistical Models. For both the logistic regression and
random forest classification models, the predictive threshold
was set as the probability of PFAS concentrations exceeding a
uniform detection limit inferred from the observations (Table
1).15,43 Well water samples from NH were analyzed in different
batches and across laboratories with variable detection limits
(0.015−40 ng/L). Samples with a detection limit higher than
five times the median detection limit (n = 254, 1.6% of
samples) were omitted from our analysis. For each of the five
frequently detected PFAS, we chose the threshold for the
categorical models (detectable/nondetectable) as the upper
98th percentile of detection limits for all samples (see SI
section S1 and Table S1 for details).
For the logistic regression (classification model), we

removed highly collinear predictors (Spearman correlation
coefficients greater than 0.7) before fitting the model. Residual
multicollinearity problems were addressed by removing
predictors with a large variance inflation factor (greater than
10). We performed stepwise selection of predictors by
minimizing Akaike’s Information Criteria (AIC). Model
performance was evaluated by model discrimination (C-
statistics) and the area under the Receiver Operating
Characteristics curve (AUROC), which both range from 0.5
(no predictive power) to 1 (perfect predictive power).44 The
C-statistic indicates the probability a randomly selected well
with a positive detection has a higher risk score than a well
with a nondetect. True positive rate, true negative rate, false
positive rate, and false negative rate were calculated during the
stratified 10-fold cross-validation using the confusion matrix
shown in Figure S3. A true positive is defined as a positive

model prediction that is observed above detection limit. A true
negative is defined a predicted nondetect that is also below
detection in the measured data. A false negative is a modeled
concentration that is below detection but the observed valued
is detectable. False positives are modeled detectable concen-
trations that are below detection in the observations. We
calculated the 95% confidence interval (CI) around the
AUROC to show the uncertainty associated with model
performance metrics. This was calculated by performing 10-
fold stratified cross-validation, in which the observations were
partitioned into ten subsets that maintained the ratio of wells
with detectable and nondetectable concentrations.45,46 We
treated one subset as the test data (n ∼ 230) and trained a
model on the remaining nine subsets (n ∼ 2070). This
procedure was performed 10 times such that each subset was
used once as the test data. We calculated standardized
coefficients to assess the relative importance of predictor
variables. Statistical analyses were conducted using stats
package, MASS package, and arm package in R 4.0.0.47

The classification random forest model represents an
ensemble of individual classification trees. These models tend
to have higher prediction accuracy than individual tree-based
methods.48 Predictions on new data are obtained by the
“majority vote” of all of the trees in the ensemble. Model
hyperparameters influence the speed and quality of the
machine learning and include the number of trees, node size,
and number of variables randomly sampled at each split. We
tuned hyperparameters using grid search to maximize
predictive accuracy in the classification random forest. Similar
to the logistic regression model, we calculated the AUROC
and its 95% CI using stratified 10-fold cross-validation.
Statistical analyses were conducted using randomForest package
in R 4.0.0.49 We also developed a continuous model

Figure 1. Receiver Operating Characteristic (ROC) curves for comparing the performance of classification random forest models (lighter lines)
and logistic regression models (darker lines) for the five PFAS and the detection of any of the five (“sumPFAS”). The perfect classifier (0.0, 1.0)
would be located in the upper left corner, while a random classifier would be the diagonal line going through (0.5, 0.5). Discrimination thresholds
for the true positive rate (probability of correctly identifying a well with detectable PFAS) and probability of false alarm (false positive: incorrectly
flagging a well as likely to have detectable PFAS when concentrations are below detection) can be tuned in each model. For screening the potential
presence of PFAS in private wells, maximizing the true positive rate and collecting field samples from flagged locations would be most protective of
public health.
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(regression random forest) that is described in the SI Section
S3 and Table S4. The R codes for data management and
analyses in this article can be accessed at https://github.com/
SunderlandLab/pfas_nh_model.

■ RESULTS AND DISCUSSION

PFAS Concentrations in New Hampshire Wells.
Summed PFOA and PFOS concentrations exceeded the US
EPA provisional lifetime advisory of 70 ng/L level for 14% of
the wells and maximum concentrations of the sum of five
PFAS were hundreds to thousands of times higher than the
U.S. EPA health-advisory level and the state of NH’s proposed
maximum contaminant levels (MCLs): 12 ng/L PFOA, 15 ng/
L PFOS, 18 ng/L PFHxS, 11 ng/L PFNA.24 The highest
concentrations of individual PFAS detected in NH were in the
ug/L range (Table 1) and were mainly concentrated in the
southern part of the state close to the two main industrial
sources (SI Figure S1). Private wells in the northern parts of
the state were more sparsely sampled but generally appear to
have lower concentrations (see TOC art).
Model Evaluation and Comparison. For the classifica-

tion models, the AUROC for the classification random forest
was higher than the logistic regression for all five PFAS
modeled and the detection of any of the five PFAS (sumPFAS)
(Figure 1). Up to 13 significant predictors (p < 0.0001) were
selected in the logistic regression models for the five individual
PFAS and sumPFAS models (Table S5). The AUROC reflects
the trade-off in model performance to optimize the true

positive rate (detectable levels of PFAS predicted and
observed) or the false positive rate (levels of PFAS predicted
to be above detection but observed below detection) and
ranges from 0.5 (no predictive power) to 1 (perfect predictive
power). The best performing model (classification random
forest) is the one with the largest integral (Figure 1).
The AUROC for the classification random forest model

ranged from 0.74 (95% CI: 0.72, 0.77 for PFOS to 0.86 (95%
CI: 0.84, 0.87) for PFHpA (Figure 2). Improvements in model
performance expressed as AUROC relative to the logistic
regression ranged from 0.1 for PFOS to 0.15 for PFOA.
Tuning of hyperparameters in the classification random forest
had a small impact on the AUROC (SI Table S6).
For a screening model, the false negative rate (predicting a

well is below detection when it is above detection) is more
important than false positives. Setting the false negative rate at
20%, the false positive rates for the four perfluoroalkyl
carboxylic acids (PFCA, which refers to PFPeA, PFHxA,
PFHpA, and PFOA) (29% to 38%) and PFOS (50%) in
classification random forest are lower than those for the logistic
regression (50% to 60%, Figure 1). Better performance of the
classification random forest models for PFAS in private wells
suggests they are most useful for prioritizing sampling and
identifying susceptible regions.

Important Predictors of PFAS in Private Wells. PFAS
point sources were the most important predictors in the
classification random forest model for NH private wells
(Figure 2). The top ranked predictor for all PFAS except

Figure 2. Relative contributions of all variables in classification random forest for five PFAS that maximized the overall prediction accuracy. The
relative contribution of a variable was measured by the decrease in prediction accuracy if this variable was permuted. “sumPFAS” refers to the
detection of any of the five PFAS. Headers provide performance information for the classification random forest models (n = sample size, Area
under the Receiver Operating Characteristics curve (AUROC) indicates the classification model’s performance). The mean AUROC and 95%
confidence intervals (CI) were calculated by 10-fold cross-validation, where the entire data set was split into 10 folds and each fold was used as the
testing set with the rest of the data used as the training set. The process was repeated for 10 times until each fold was used as the testing set.
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PFOS in terms of relative contribution to model accuracy was
the plastics and rubber industry, followed by the potential
PFAS source category identified by screening industry codes
(Figure 2). For PFOS, point sources contribute relatively less
to model accuracy than the four PFCA, likely because the
confirmed sources included in the model such as a plastics
manufacturer released relatively more PFCA than PFOS.50,51

In addition, AFFF contaminated military bases and airports
were not as strong predictors as might be expected, given the
low number of wells (n = 51 and 36, respectively) sampled that
could be affected by these sources in the training data set
(Figure S4).
Soil properties (bottom panel of Figure 2) exert a greater

influence on model accuracy for PFOA and PFOS compared
to the shorter chain PFCA. This may reflect the propensity for
longer chain PFAS to partition more strongly to soil organic
carbon, thus allowing a greater influence of soil properties on
transport.52 Groundwater recharge and the plastics and rubber
industry are particularly important for PFOA, likely due to a
large releases and subsequent transport away from several well
established point sources (e.g., manufacturing industry in
Merrimack, NH).53,54 For the shorter chain PFCA, monthly
precipitation stands out as a relatively important contributor to
model performance and may reflect an atmospheric contribu-
tion to some private wells, as noted in other regions of the
Northeastern US.36

Toward a National Model for PFAS in Private Wells. A
large number of domestic well users (43 million residents)
across the U.S. lack access to well testing but may be exposed
to PFAS.55 Many states are developing monitoring programs
for PFAS in private wells, and sampling is often skewed toward
known industrial sources and other contaminated sites. Results
of this work show preliminary data collected by states can be
used to develop statistical models that help screen for PFAS
occurrence. Classification random forest models, in particular,
performed well (AUROC ∼ 0.8) for identifying locations likely
to have detectable PFAS concentrations in private wells in this
NH case study.
Logistic regression has been used in previous modeling of

groundwater contamination by inorganic contaminants be-
cause it can handle left-censored concentration data, it is
straightforward to develop, and often produces a parsimonious
model after variable selection (SI Section S4, Table S7).17,55

However, logistic regression assumes a linear relationship
between predictors and the log odds of detection, while in fact
this relationship can be highly nonlinear.56,57 Logistic
regression also has limited capacity for handling potential
interactions among predictors. Classification random forest
models provide a preferred alternative because they do not
contain assumptions related to data distribution, they are well-
suited for handling nonlinear relationships between predictors
and outcomes,48 and they are less sensitive to collinearity
among predictors.58 A limitation of both logistic regression and
classification random forest models is that they predict the
probability of exceeding a threshold PFAS concentration rather
than an absolute value. However, threshold concentrations
may be of more interest to environmental regulators because
model results can be compared directly with health advisory
levels or water-quality standards.
This study shows the results of model evaluation and

performance for the state of NH, but the approach for
developing a classification random forest model for PFAS in
private wells, using nationally available predictors, is easily

extendable to other regions with available private well testing
data for model construction and testing. The relative
importance of predictors is likely to vary substantially across
states, and correct identification of PFAS sources is extremely
important for model performance. For NH, impacts from
industrial sources were the most important contributors to
model performance. Thus, the greatest improvements in model
performance may be obtained by local ground-truthing
exercises for the “potential sources” identified in this study
that correctly identify additional confirmed PFAS sources, as
well as the better characterization of the impacted areas around
the potential contaminated sources. Overall, this study
demonstrates the utility of machine learning models for
screening private-wells likely to have detectable PFAS
concentrations that could be prioritized for additional
monitoring.
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